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Lattice-based cryptography II

In this talk:

Introduction to (ring-)LWE

Lattice-based key-exchange and encryption schemes

Reaction attacks and countermeasures

Lattice-based signature schemes

Side-channel attacks and countermeasures
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Lattice-based cryptography

Some features of lattice-based cryptography:

Key-exchange, encryption, digital signatures

But also more exotic stuff, e.g. homomorphic encryption

Pro’s:

The algorithms are quite fast
The keys, cipher-texts, signatures are *quite small*

Con’s:

Many design parameters to choose (and attacks to avoid)
Asymptotic hardness results vs concrete security/cryptanalysis

Largest category of NIST post-quantum submissions

Some real-life experiments (e.g. Google)
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Learning With Errors
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Learning with Errors (LWE) - Noisy inner product

Let q be a prime, n > 0 (usually a power of 2), χ some narrow error
distribution in Zq, 〈x, y〉 =

∑n
i=1 xiyi mod q usual inner-product

Let s← χn be a secret

Given pairs of (a, b = 〈a, s〉+ e) with

a ∈ Zn
q sampled uniform at random

e sampled from χ

(plain-) LWE: find s
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∑n
i=1 xiyi mod q usual inner-product

Let s← χn be a secret
Given pairs of (a, b = 〈a, s〉+ e) with

a ∈ Zn
q sampled uniform at random

e sampled from χ

(plain-) LWE: find s
Common choice for χ: the discrete Gaussian distribution Dσ
Regev showed that a hard lattice problem can be reduced to LWE

First proposals for cryptosystems were quite big...
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Ring-LWE: noisy polynomials

Let q be a prime, n > 0 (usually a power of 2),

Now define R = Zq[x ]/(xn ± 1). Can add/subtract and multiply

f = f0 + f1x + ...+ fn−1x
n−1 ∈ R

fi ∈ [0, q)

f + g ∈ R
fg ∈ R
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Lattice-based Key-Exchange
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Mimic Diffie-Hellman key-exchange

Recall Diffie-Hellman key-exchange

Alice BobPublic: G = 〈g〉, |G| = n

a←$ [1, n) b←$ [1, n)

pubA = ga pubB = gb
pubA

pubB

KA = (pubB)
a = gab KB = (pubA)

b = gab

Both parties end up with shared key K = gab
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LWE key-exchange: noisy Diffie-Hellman

ring-LWE key-exchange

Alice BobPublic: g ∈ R, distribution χ = Dn
σ

a, e←$ χ b, e′ ←$ χ

pubA = ga+ e pubB = gb+ e′pubA

pubB
SA = (pubB)a

= gab+ e′a

SB = (pubA)b

= gab+ eb

a,b, e, e′ ← Dn
σ , so small!

Keys are approximately equal: gab + e′a ≈ gab + eb

Need a way to get shared secret bits
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LWE key-exchange: mapping coefficients

How to map coefficients to bits

Alice and Bob obtained close vectors SA,SB ∈ Zn
q
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LWE key-exchange: mapping coefficients

How to map coefficients to bits

Alice and Bob obtained close vectors SA,SB ∈ Zn
q

0 ≡ q

q/4

q/2

3q/4 01

“the edge”

Error!

Alice : 0

Bob : 1
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LWE key-exchange: reconciliation

Mapping coefficients by fixed map induces many errors

Better idea: use two mappings and let Bob decide on which map

Choose map where SB is far from edge

0 ≡ q

q/4

q/2

3q/4 01

Map 0 Map 1 0 ≡ q

q/4

q/2

3q/4

0

1
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LWE key-exchange: putting it together

LWE key-exchange with reconciliation

Alice BobPublic: g ∈ R, distribution χ = Dn
σ

a, e←$ χ

pubA = ga+ e
pubA

b, e′ ←$ χ

pubB = gb+ e′

u = reconc(pubAb)

K = map(pubBa,u) K = map(pubAb,u)

(pubB ,u)

Can show that probability of errors is small for q, n, σ well-chosen

Several tweaks; e.g. let Alice choose g (New-Hope)
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What about LWE encryption?

Can do LWE encryption by masking the message into LWE sample:

Alice BobPublic: g ∈ R, distribution χ = Dn
σ

a, e←$ χ

pubA = ga+ e
pubA

m ∈ {0, 1}n

b, e′, e′′ ← χ

pubB = gb+ e′

v = pubAb+ e′′

c = v + encode(m)

(pubB , c)c− pubBa
≈ encode(m)

c− pubBa = encode(m) + e′′ + eb + e′a
encode(m) = (q/2)m
Recover m by some mapping operation (reconciliation)

July 1st, 2019 13 / 27



What about LWE encryption?

Can do LWE encryption by masking the message into LWE sample:

Alice BobPublic: g ∈ R, distribution χ = Dn
σ

a, e←$ χ

pubA = ga+ e
pubA

m ∈ {0, 1}n

b, e′, e′′ ← χ

pubB = gb+ e′

v = pubAb+ e′′

c = v + encode(m)

(pubB , c)c− pubBa
≈ encode(m)

c− pubBa = encode(m) + e′′ + eb + e′a

encode(m) = (q/2)m
Recover m by some mapping operation (reconciliation)

July 1st, 2019 13 / 27



What about LWE encryption?

Can do LWE encryption by masking the message into LWE sample:

Alice BobPublic: g ∈ R, distribution χ = Dn
σ

a, e←$ χ

pubA = ga+ e
pubA

m ∈ {0, 1}n

b, e′, e′′ ← χ

pubB = gb+ e′

v = pubAb+ e′′

c = v + encode(m)

(pubB , c)c− pubBa
≈ encode(m)

c− pubBa = encode(m) + e′′ + eb + e′a
encode(m) = (q/2)m
Recover m by some mapping operation (reconciliation)

July 1st, 2019 13 / 27



LWE key-exchange: reaction attacks!

Can we now replace (EC)DH with LWE?

NO!

Watch out for reaction attacks! or “Evil Bob”

Bob can deliberately choose “bad” elements b, e′,u

Watches if errors occur during key-exchange/protocol
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Can we now replace (EC)DH with LWE? NO!

Watch out for reaction attacks! or “Evil Bob”

Bob can deliberately choose “bad” elements b, e′,u

Watches if errors occur during key-exchange/protocol
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LWE key-exchange: ephemeral versus cached keys

The shown LWE key-exchange/encryption must be used ephemeral

To cache keys, most of the LWE schemes use the FO-transform

There are two possibilities: IND-CPA or IND-CCA

Claims of IND-CCA without FO are fishy (“Hilaas Pindakaas”)
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Lattice-based Signatures
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Lattice-based Signatures

Thijs covered GGH Signatures

Hash-and-sign signature: requires a trapdoor (e.g. RSA, CVP)

What about ring-LWE signatures?

Need to slightly adapt the problem

The Ring-Short-Integer-Solution (ring-SIS), is the problem of:

Given a ∈ R
Target polynomial t ∈ R (can be 0)

Find non-zero s ∈ R s.t. as ≡ t mod q and s small

Also plain versions (plain-SIS)
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Hash-and-Sign by SIS

Public key: a ∈ R

Secret key: s: “some way” to solve ring-SIS for any target b

Sign(s,m): return small z with az ≡ H(m) mod q

Verify(z,m): check wether az
?≡ H(m) mod q and z small

Every signature leaks “some” way of solving SIS

Long history of “parallelepiped learning attacks”!

Also applies to GGH, NTRUSign, DRS(submitted to NIST)
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LWE/SIS Signatures: the other way

Hash-and-sign “problematic”, so what else?

DSA (i.e. DH signatures) is not hash-and-sign...

So instead, try Fiat-Shamir!
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Diffie-Hellman identification protocol

Proof-of-knowledge

Alice (prover) Bob (verifier)Public: G = 〈g〉, |G| = n

Secret x ∈ [1, n− 1) Public h = gx

y ←$ [1, n− 1)

u = gy
u

c←$ [1, n− 1)
c

z = y − cx
z

Accept iff gzhc = u

Let’s replace g , x , g x by a, short s, t = as mod q

And y , u by y, u = ay
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Diffie-Hellman identification protocol

Signature scheme (Fiat-Shamir)

Alice (prover) Bob (verifier)Public: G = 〈g〉, |G| = n

Secret x ∈ [1, n− 1)

Message m

Public h = gx

y ←$ [1, n− 1)

u = gy

c = H(u,m)

z = y − cx
(c, z)

H(gzhc,m)
?
= c

Let’s replace g , x , g x by a, short s, t = as mod q

And y , u by y, u = ay
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Fiat-Shamir lattice-based signatures

Mimic DSA with ring-SIS:

Alice (prover) Bob (verifier)Public: a ∈ R

Secret short s

Message m

Public t ≡ as mod q

y←$ Zn
q

u = ay mod q

c = H(u,m)

z = y + sc
(c, z)

H(az− tc,m)
?
= c

y “hides” the secret part

H outputs sparse binary polynomials

But now u = ay not SIS as y not small → use y←$ D
n
σ
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Fiat-Shamir lattice-based signatures

Mimic DSA with ring-SIS:

Alice (prover) Bob (verifier)Public: a ∈ R

Secret short s

Message m

Public t ≡ as mod q

y←$ Zn
q

u = ay mod q

c = H(u,m)

z = y + sc
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Fiat-Shamir lattice-based signatures

Mimic DSA with discrete Gaussians:

Alice (prover) Bob (verifier)Public: a ∈ R

Secret short s

Message m

Public t ≡ as mod q

y←$ Dn
σ

u = ay mod q

c = H(u,m)

z = y + sc
(c, z)

H(az− tc,m)
?
= c

z small?

But now still leaking noisy information on s

Use Fiat-Shamir with Aborts!
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Fiat-Shamir lattice-based signatures

Fiat-Shamir with discrete Gaussians and aborts:

Alice (prover) Bob (verifier)Public: a ∈ R

Secret short s

Message m

Public t ≡ as mod q

y←$ D
n
σ

u = ay mod q

c = H(u,m)

z = y + sc

Abort w.p. ρ(z)

(c, z)
H(az− tc,m)

?
= c

z small?

Signatures statistically independent of s, i.e. z ∼ Dn
σ

Several optimizations (i.e. BLISS)
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Implementation Issues
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Lattice-based signatures: side-channel attacks!

Can we now replace (EC)DSA/RSA with e.g. BLISS?

Kinda, it
depends...

Watch out for side-channel attacks!
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Lattice-based signatures: side-channel attacks!

Can we now replace (EC)DSA/RSA with e.g. BLISS? Kinda, it
depends...

Watch out for side-channel attacks!

Cryptographic oper
ati
on

Input Output

Secret key

Side-channel attack

Data acquisition:
power information,
fault information,
timings, etc.

Analysis
Key recovered!
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Side-channel attacks on lattice-based signatures

Signature z = y + sc, c
y←$ D

n
σ looks nice and short on paper...
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Side-channel attacks on lattice-based signatures

Signature z = y + sc, c

y←$ Dσ looks nice and short on paper...

...but very nasty in code: about 30% of the running time!

Good target for a side-channel attack

In 2016, we showed how to break BLISS with cache-attacks

From noisy information on y, construct an “easy lattice problem”

All discrete Gaussian samplers have vulnerabilities

Possibly the reason why BLISS was not submitted to NIST
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Lattice-based signatures 2.0

Discrete Gaussian sampling problematic

Use small uniform noise instead?

Possible, but signatures become larger

Dilithium and TESLA still reasonable size

Additionally remove sampling all-together, i.e. deterministic schemes

In 2018, we showed several differential fault attacks

TESLA is now randomized again
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Lattice-based cryptography: the takeaways

For key-exchange/encryption, several good options

Many design choices! (ring-)LWE, NTRU, LWR; IND-CPA/CCA.

For digital signatures, sampling randomness can be problematic.

Watch out for side-channel attacks, i.e. write constant-time code!

Many ongoing improvements to signature schemes and samplers
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Further reading
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